CHM 1046
Professor Fowler
Chapter 16 Homework
Malonic acid $\left(\mathrm{H}_{2} \mathrm{Mal}\right)$ is diprotic and has $\mathrm{pK}_{\mathrm{a} 1}=2.83$ and $\mathrm{pK}_{\mathrm{a} 2}=5.70$.
$\mathrm{H}_{2} \mathrm{Mal}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons \mathrm{HMal}^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})}$
$\mathrm{HMal}^{-1}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons \mathrm{Mal}^{-2}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+1}$

1. Determine the expression (with $\mathrm{H}_{2} \mathrm{Mal}$ and HMal^{-1}) and the numerical value for $\mathrm{K}_{\mathrm{a} 1}$. (1 pt)
2. Determine the expression (with HMal^{-1} and Mal^{-2}) and the numerical value for $\mathrm{K}_{\mathrm{a} 2}$. (1 pt)
3. Set up an equilibrium table for the first reaction when $\left[\mathrm{H}_{2} \mathrm{Mal}\right]_{0}=0.300 \mathrm{M}$. Determine both $\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]$ and $\left[\mathrm{HMal}^{-1}\right]$. Then find the pH .
Finally, find the $\%$ dissociation using: $\quad\left(\frac{\left[\mathrm{HMal}^{-1}\right]}{\left[\mathrm{H}_{2} \mathrm{Mal}_{\mathrm{o}}\right.}\right) \times 100 \%$ (2 pts)
4. Review Polyprotic Acids and Example 16.04 in chapter 16 notes.

Set up a similar equilibrium table for the second malonic acid reaction.
Use " y " as the variable to determine $\left[\mathrm{Mal}^{-2}\right]$. Show all three steps in the derivation for y from $\mathrm{K}_{\mathrm{a} 2}$. Also, show with an equation that " y " does not affect pH . Finally, determine the $\%$ of the original $\mathrm{H}_{2} \mathrm{Mal}$ concentration $(0.3 \mathrm{M})$ that becomes Mal^{-2} :

$$
\begin{equation*}
\left(\frac{\left[\mathrm{Mal}^{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{Mal}_{\mathrm{o}}\right.}\right) \times 100 \% \tag{2pts}
\end{equation*}
$$

5. Review Triprotic Acids in chapter 16 notes. Suppose we have a triprotic acid $\left(\mathrm{H}_{3} \mathrm{~A}\right)$. If we solve the first and second equilibrium tables, we get:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\left[\mathrm{H}_{2} \mathrm{~A}^{-1}\right]=\mathrm{x}=\sqrt{\left(\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{3} \mathrm{~A}\right]_{0}\right)} \text { and }\left[\mathrm{HA}^{-2}\right]=\mathrm{y}=\mathrm{K}_{\mathrm{a} 2} .
$$

Finish the third table below and find z in terms of x, y, and $K_{a 3}=\frac{\left[A^{-3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]}{\left[\mathrm{HA}^{-2}\right]}$
Then, substitute the expressions for x and y above into your equation for z .
Actual number values are not necessary. (2 pts)

$$
\begin{array}{cc}
\mathrm{HA}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-3}+ & \mathrm{H}_{3} \mathrm{O}^{+1} \\
\mathrm{y} & 0
\end{array}
$$

6. Review Buffers in the chapter 16 notes. Describe the two characteristics of a buffer solution. Then, describe the two components of a buffer solution. Next, use the Henderson-Hasselbalch equation to determine the pH of an HF and F^{-1} buffer solution where $[\mathrm{HF}]=1.00 \mathrm{M}$ and $\left[\mathrm{F}^{-1}\right]=2.00 \mathrm{M}$. Use $\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}$ to find the pKa . (2 pts)
